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ABSTRACT 

In recent decades, biopolymers have shown promising applications in soil 

modification due to its environmental friendly nature. Most of the studies, however, 

focused on mechanical properties at saturated or unsaturated conditions. The study on 

unsaturated soil behaviors under controlled pore air and pore water pressures were 

limited. Soil-water characteristic curve (SWCC), relating water content with matric 

suction is a key property to evaluate unsaturated soils. With SWCC, other soil properties, 

such as hydraulic conductivity and shear strength can be estimated. In this study, SWCC 

of sands modified with different biopolymers were measured with both Tempe cell and 

Fredlund SWCC device. An elevation-controlled low suction (0.01 to 5 kPa) horizontal 

tube was developed to accurately measure SWCC of sands. Corrections for air diffusion 

and evaporation were performed. The results were fitted by both Fredlund and Xing and 

van Genutchen equations. In addition, inverse simulation of SWCC based on one-step or 

multistep SWCC measurements were carried out with software Hydrus 1D, finite element 

software. The measured SWCC results of mine tailing were used as an example. The 

inverse model can significantly reduce the time to measure a SWCC curve, especially for 

soils with low hydraulic conductivity (clay and silt). Three different input outflow 

methods were used, namely multiple single-step outflow method (MSOM), one-step 

outflow method (OOM), and multiple-step outflow method (MOM). Their performance 

was evaluated by both SWCC results and outflow vs. time curves. It was found that 

MOM provided the most accurate SWCC, while MSOM yielded the most accurate Flux – 

Time results.   
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1. INTRODUCTION 

1.1. BIOPOLYMER MODIFICATION 

Recent developments of using organic agents for soil stabilization have shown 

promising results. Organic agents, such as polymers (polyacrylamide, PAM), 

biopolymers (xanthan gum), and surfactants, have exhibited their abilities to improve the 

shear strength, stiffness, and erosion resistance behaviors of geomaterials. Besides, PAM 

and xanthan gum show great impact in enhanced oil recovery. In spite of the extensive 

amount of work that has been done in soil modification with chemical and microbial 

methods, most of the work focused on evaluating the swelling/shrinkage, large strain 

strength, small strain stiffness, and hydraulic conductivity properties in either saturated or 

unsaturated condition.  

 

1.2. SOIL-WATER CHARACTERISTIC CURVE (SWCC) 

Only a few studies controlled the unsaturation conditions, such as matric suction 

(Puppala et al., 2006). In the field condition, soils are not always saturated due to 

seasonal groundwater level change, precipitation, evaporation, and evapotranspiration. 

Once desaturation occurs, soils become unsaturated. The above mentioned mechanical 

properties of organically modified geomaterials could change drastically (Fredlund and 

Rahardjo, 1993; Fredlund et al., 2012). It is crucial, therefore, to quantify these changes. 

These changes are primarily due to the surface tension, contact angle and viscosity of 

water changes with the addition of biopolymers. Soil-water characteristic curve (SWCC) 

is a description between water content and matric suction which is a key property to 

evaluate unsaturated soils. With SWCC, other soil properties, such as hydraulic 

conductivity and shear strength can be estimated. SWCC can be used in earth dams, 

contaminant transport and nutrition absorption of plant. These three problems are all 

about unsaturated water flow which can be related to SWCC. Besides unsaturated water 

flow, due to the matric suction inside soil, the shear strength of soil will be increased 

which will show a good result of designing geotechnical projects. Most of the 

engineering projects are designed in saturation condition which is more conservative. 
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Since unsaturated condition is changing all the time, there is no guarantee that the matric 

suction is always inside the soil.  

 

1.3. HYDRUS 1D NUMERICAL ANALYSIS 

On the other hand, determination of SWCC experimentally is time consuming, 

especially for fine-grained soils. Alternatively, numerical estimations from grain size 

distribution, pore size distribution, and inverse modeling were proposed. The reliability 

of pore size based methods is not satisfactory. Wayllace and Lu (2012) used inverse 

modeling for estimating SWCC with a transient water release and imbitions method 

(TRIM) for rapidly measuring wetting and drying SWCC and hydraulic conductivity 

functions. The inverse modeling can significantly reduce the time to measure a SWCC 

curve, especially for soils with low hydraulic conductivity (clay and silt). 

 

1.4. OBJECTIVES OF STUDY 

The first objective of this study is to elucidate the mechanisms of the effects of 

biopolymers on the water holding capacity of sands. To realize this objective, the 

following tasks will be performed.  

1. Use both Tempe cell and Fredlund SWCC device to measure soil-water 

characteristic curve (SWCC) of geomaterials (sands, kaolinite, and mine tailing) 

that were modified with different biopolymers.  

2. Develop an elevation-controlled low suction (0.01 to 4 kPa) horizontal tube to 

accurately measure SWCC of sands. Corrections for air diffusion and evaporation 

were performed.  

3. Use Fredlund and Xing (1994) and Van Genutchen (1980) SWCC models to fit 

the measured SWCC results with least square method. The fitting parameters will 

be compared, and Scanning Electron Microscope (SEM) images will be taken to 

evaluate the effects of biopolymers on the pore morphology (size, size 

distribution, connectivity, and tortuosity) of the biopolymer-modified 

geomaterials.  

4. Measure the contact angle, surface tension, and viscosity of biopolymer solutions. 

Then use Laplace equation to calculate the pore size distributions. Together with 
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the results from Task 3, the influence of biopolymers on the pore fabric and bulk 

solutions will be better understood. 

 

The second objective of this study is to propose transient outflow methods to 

predict SWCC of geomaterials with different particle size ditributions. There methods 

will save the time-consuming procedure of SWCC measurements. To realize this 

objective the following tasks will be performed. 

5. Use the recorded outflow-time relationship to predict SWCC and relative 

hydraulic conductivity using inverse modeling method by Hydrus 1D (Wayllace 

and Lu, 2012), a finite element software. With the measured SWCC results of a 

mine tailing as an example, three different input outflow methods, namely 

multiple single-step outflow method (MSOM), one-step outflow method (OOM), 

and multiple-step outflow method (MOM) were used.  

6. Compare the performance of these methods in terms of R2 of both SWCC results 

and outflow vs. time curves.  

 

1.5. LAYOUT OF THESIS 

Section 2 is literature review. This section contains different soil modification 

methods, including both advantages and disadvantages for each method. The advantages 

of for bio-polymer modification for sand will be exhibited.  

 

Section 3 is soil and solutions’ index properties about all the materials used in the 

SWCC test. They are uniform sand with different grain size, kaolinite and mine tailings. 

All biopolymers solutions’ properties include surface tension, contact angle and viscosity. 

 

Section 4 is the introduction for basic theory of unsaturated soil and SWCC, 

including sample preparation, test device introduction, model for SWCC and correction. 

 

Section 5 is the SWCC results for different grain size uniform sands with water 

and biopolymers, mine tailings and kaolinite with biopolymer. 
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Section 6 will exhibit the numerical analysis results from soil physical parameters 

and by using HYDRUS-1D, the SWCC will be reversed calculated which will save a lot 

of time for SWCC test. 

 

Section 7 is the conclusion and future work. 
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2. LITERATURE REVIEW 

2.1. BIOPOLYMER MODIFICATION 

Recent developments in the use of organic agents for soil stabilization show 

promising results. Organic agents, such as polymers (polyacrylamide, PAM), 

biopolymers (xanthan gum), and surfactants, have exhibited their abilities to improve the 

shear strength, stiffness, and erosion resistance behaviors of geomaterials (Briscoe and 

Klein, 2007; Yoshizawa et al., 1993; Bate et al., 2014; Bate et al., 2013; Kang et al., 2014; 

Martin et al., 1996; Kavazanjian et al., 2009; Cabalar and Canakci, 2005; Nugent et al., 

2011). Briscoe and Klein (2007) observed that under water hydration, the slip plane 

during shearing between two surfactant coated mica surfaces is at the interface of 

surfactant head and the mica surface. Bate et al. (2013; 2014) found that the addition of a 

surfactant with long carbon chain (C16) onto montmorillonite can increase the friction 

angle up to 60o, and increase the shear wave velocity up to 154 m/s at a mean normal 

stress of 50 kPa. Adsorbed surfactant reduced net surface charge (indicated by the zeta 

potential) of the soil particle, condensed the soil, and increased the interfacial friction. 

Xanthan gum, a polysaccharide derived from the bacteria coat of Xanthomonas 

campestris, is reported to increase shear strength of a sand from 30 kPa to 190 kPa with 

only up to 5% (by weight) addition (Cabalar and Canakci, 2005). The study by Martin et 

al. (1996) showed that mixing silt with 0.3 weight percent of xanthan gum increased 

shear strength by up to 30%. In addition, Xanthan gum was also used in increasing wind 

and coastal stream erosion resistance (Kavazanjian et al., 2009; Nugent et al., 2011). 

Polyacrylamide (PAM), an industrial polymer, has been widely used in highway erosion 

control and soil reservation and recovery. Furthermore, increasing number of studies on 

organically modified soils were also reported in drilling slurry (Mazzieri et al. 2010), 

slurry wall, mineral separation (Chandraprabha et al., 2004), and geosynthetic clay liner 

(Lake and Rowe, 2005). Chen and Zhang (2013) using xanthan gum and guar gum to 

stabilize mine tailings, the effect of biopolymer is building the bonding between mine 

tailing particles which will stabilize mine tailing. Voordouw (2012) showed that oil sand 

tailings can be stabilized by using a positive charged biopolymer.  
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In spite of the extensive amount of work done in soil modification with chemical 

and microbial methods, most of the work focused on evaluating the swelling, large strain 

strength, small strain stiffness, and hydraulic conductivity properties in either saturated or 

unsaturated condition. Only a few studies controlled the unsaturation conditions, such as 

matric suction (Puppala et al., 2006). In the field condition, soils are not always saturated 

due to seasonal groundwater level change, precipitation, evaporation, and 

evapotranspiration. Once desaturation occurs, soils become unsaturated. The above 

mentioned mechanical properties of organically modified geomaterials could change 

drastically (Fredlund and Rahardjo, 1993; Fredlund et al., 2012). It is crucial, therefore, 

to quantify these changes. These changes are primarily due to the surface tension, contact 

angle and viscosity of water changes with the addition of bio-polymers (Adamson and 

Gast, 1967). The solution properties are important factors for SWCC test. Surface tension 

(Ts), contact angle (), pore size (r), density () and gravity constant (g) are related to 

matric suction(): 

2 cossT

g r






 


       Eq. 2.1 

Viscosity is related to the hydraulic conductivity for a porous media with the 

same pore structure (permeability, , hydraulic conductivity, K) but with different pore 

fluid (viscosity,):  

K
g







                           Eq. 2.2 

Biopolymers can modify these three properties, which leads to changes in the 

water retention ability of the same porous media with different biopolymer solutions. The 

water retention capability can be quantified by measurement of soil-water characteristic 

curve (SWCC). 

 

2.2. UNSATURATED SAND PROPERTIES 

The unsaturated soil properties of natural geomaterials have been widely studied. 

Imre (2008) studied SWCC of both well graded and poorly graded sands. Due to the low 

water hold capacity, sand will start loss water before 1 kPa and almost drained out under 

matric suction at 100 kPa. Figure 2.1 showed the SWCC result. 
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Figure 2.1 SWCC result for Imre (2003,2007) 

 

2.3. INTRODUCTION OF SOIL-WATER CHARACTERISTIC CURVE 

Soil suction is generated by unsaturation soil behavior. All soil beneath 

underground water table is in saturation condition, but soil above water table will stay in 

unsaturated condition. The principle is the same as capillarity tube. The pore between 

each soil particles connect with each other and form capillary tube which will lead to 

water lift up. Usually, the water content used in soil mechanics is gravimetric water 

content. The definition of volumetric water content is the volume of water remaining in 

soil divided by total volume of soil sample. Figure 2.2 shows SWCC result for No.125 

sand. 
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Figure 2.2 SWCC for No. 125 Sand 

 

Soil-Water Characteristic Curve (SWCC) exhibits the relationship between matric 

suction and volumetric water content inside a soil (Williams, 1982). There are two types 

of suction in soil, namely matric suction ( ) and osmotic suction. Matric suction is the 

difference between air pressure (ua) and water pressure (uw), i.e. a wu u   . Osmotic 

suction is only related to the chemical properties of bulk solution. Comparing to matric 

suction, osmotic suction is usually small and can be neglected in most cases with diluted 

solutions and coarse-grained geomaterials. SWCC varies with pore size distribution, 

mineralogy, and bulk fluid.  

A typical SWCC was shown in Figure 2.3. Air entry value (AEV) of soil is the 

suction that cause air starts to get into the largest pores. The major water desaturation 

occurs between AEV and residual matric suction (r). The water content at residual 

matric suction is termed residual water content (r). The determination of AEV is draw 

two tangent line of initial SWCC and desorption curve, the value of cross is AEV. 

Residual water content is the cross between desorption curve and residual SWCC.  
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Figure 2.3 Fredlund and Xing model for SWCC (1994) 

 

Previously, many researchers proposed SWCC models as summarized by Ba-Te 

(2005) and in Table 2.1. 

 

Table 2.1 Previous SWCC model (Ba-Te, 2005) 

Model name Model Parameters 

Gardner (1922) 
* B

D


   
B, D =parameters 

Burdine(1953) 
**

  
1 2/

1

1
n

n
S

a






 
a, n =parameters 

Gardner (1958) 1
1 n

S
a




 
a, n =curve-fitting 
parameters 

Brooks and 
Corey (1964) aev







 
  
 

 
aev  =air-entry value,  

  =pore-size distribution 
index 

Brutsaert model 
(1966) 

1

1
n

S

a




 
  
 

 
a, n =parameters 

Normal 
distribution 

1
2 2

S erfc
s

  
  

 
 

 ,s =parameters 
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Mualem (1976) 

  
1 1/

1

1
n

n
S

a






 
a, n =parameters 

Van Genuchten 
(1980) 

  
1

1
m

n
S

a




 
a, n, m = parameters 

Williams et al. 
(1983) 

1 1ln lna b    1a , 1b  =curve fitting 
parameters 

McKee and 
Bumb (1987) 
(Modified 
Boltzman) 

expS
B

 
  

 
 

B =parameters 

Fredlund and 
Xing (1994) 

1

ln
m

n

S

e
a




   

        

 
a, n, m = parameters 

Kosugi (1994) 
(Modified Tani) 2

mod

ln
1
2 2

aev

aev e

s

S erfc
s

 

 



  
  

  
 
  
 

 

s= parameter related to 
the standard deviation of 
pore size distribution,  

emod =the mode of the 
pore size distribution, 
erfc =the complimentary 
error function  

* :   =normalized water content (    rsr   / , where s  and r  are the 
saturated and residual volumetric water contents, respectively), 
** : S =degree of saturation 

                             Table 2.1 Previous SWCC model (Ba-Te, 2005) (cont.) 

 

The water retention capability is very important in agriculture, and the soil water 

characteristic curve in agriculture literature is referred to as water retention curve (van 

Genuchten, 1980). van Genuchten (1980) model is a continuous SWCC model as shown 

in Table 2.1: 

1
1 ( )

m

n
S



 
  

 
                                        Eq. 2.3 

The model fits the degree of saturation versus soil suction data over the entire 

range of soil suction. The equation uses three fitting parameters: a, n and m. The 

parameter a is related to the inverse of the air-entry value (AEV); the n parameter is 



www.manaraa.com

 

 

11 

related to the pore size distribution of the soil and the m parameter is related to the 

asymmetry of the model. 

Fredlund and Xing (1994) proposed a SWCC model as shown in Eq. 2.4: 

ln

s r
r m

n

e

 
 






 

    
   
                                           Eq 2.4 

Where a represents air entry value (AEV), the larger a represents the higher AEV. 

Parameter m relates to the asymmetry of the model. Parameter n is a description of the 

pore size distribution; the larger n will result in a steep SWCC curve which indicates that 

geomaterial is uniform. Figures 2.4 – 2.6 show the effect of different a, m, and n 

parameters.  

Fredlund and Xing (1994) model with residual suction correction term is as 

follows:  

 
ln(1 / )( ) 1

ln 1 (1000000 / )
r

r

C
 




 
 


                   Eq. 2.5 

Where soil suction in residual condition that can be computed (Vanapalli et al. 

1998) or assumed to be a value such as 1500 kPa or 3000 kPa. In this study, residual 

suction is taken as 1500 kPa. 

The parameter a is related to, but greater than the air entry value of the soil, and 

has the units of suction. Parameter a does not affect the overall shape of the curve but 

shifts the curve toward the higher soil suction region as a increases (Figure 2.4). 

  

 
Figure 2.4 Effect of AEV (Fredlund and Xing,1994) 
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The n value corresponds to the inflection point on the curve and it is related to the 

pore size distribution of the soil. The more uniform the pore sizes in the soil, the larger 

the value of n.  

 
Figure 2.5 Effect of parameter n (Fredlund and Xing,1994) 

 

The parameter m is related to the asymmetry of the model. Small values of m 

result in a moderate slope in the low suction range and a steeper slope in the high suction 

range.   

 
Figure 2.6 Effect of parameter m (Fredlund and Xing,1994) 

 

Among all these models, the two most popular ones are Van Genuchten (1980) 

and Fredlund and Xing (1994) model, which will be used in the analysis of the results in 

this study. As shown in Figure 2.4-2.6, all the data points are calculated through Fredlund 
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and Xing model. These two models are continuous so you can use these two model to fit 

the entire suction range of soil samples. 

 

2.4. APPLICATION OF SWCC 

Laboratory studies showed that SWCC can be related to other unsaturated soil 

properties (Fredlund and Rahardjo, 1993). Unsaturated soil permeability can be estimated 

through combining saturated permeability and SWCC together (Mualem, 1976). Shear 

strength estimation is also proposed in a similar way (Fredlund and Rahardjo, 1993).  

Unsaturated soils permeability is an important factor for many engineering applications, 

such as water flow in vadose zone, dam engineering, and seepage in slopes. Many 

researchers have explored the prediction of the permeability with using SWCC (Brooks 

and Corey 1964; Van Genuchten 1980; McKee and Bumb 1984; Fredlund and Xing 

1994). After observing the similarities in different soils behaviors, some of them 

proposed equations for estimation of SWCC and predict the variation of unsaturated 

coefficient of permeability with respect to soil suction.  

SWCC can be used to predict shear strength. The variation between soil shear 

strength and matric suction has been well established by Fredlund and Morgenstern 

(1978), Fredlund and Rahardjo (1993) and Lu and Likos (2006). It was reported that 

matric suction increase will cause an increase the shear strength. This is due to an 

additional capillarity-induced stress, either termed as matric suction or suction stress, 

which provided an additional strength term in addition to the effective stress. It was also 

shown that a nonlinear increment of shear strength with matric suction was widely 

reported. Fredlund and Morgenstern (1978) related used SWCC to predict the shear 

strength gain.  

 

2.5. DETERMINATION OF SWCC 

SWCC can be determined from laboratory measurements, particle size 

distribution, pore size distribution, or inverse modeling. Laboratory testing contains 

Tempe cell, Fredlund cell and WP4. Tempe and Fredlund cell is using air pressure to 

desaturation soil sample. WP4 is measuring the relative humidity of air above sample, at 

temperature equilibrium, relative humidity is a direct measurement of water potential. In 
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the field, tensiometer is widely used. Laboratory testing is usually time consuming, 

especially for fine-grained soils with low hydraulic conductivity. To facilitate quick and 

reliable determination of SWCC, numerical methods were proposed. Theoretical 

derivations from either particle sizes or pore size distributions are proposed (Fredlund et 

al., 2002; Wolf et al., 2013; Xiao et al., 2009). However, the deviation from the 

laboratory measurements was large in general. One-step outflow method (OOM), which 

uses the outflow vs. time curve at one matric suction value as input to inversely solve for 

SWCC, was proposed as well (Wayllace and Lu, 2012; details in Section 6). Reasonably 

results can be obtained. In this study, both laboratory and inverse-simulation were used to 

determine SWCC. 
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3. SOIL AND SOLUTION INDEX PROPERTIES 

3.1. SOIL PROPERTIES 

There are four types of materials used in this study.  

1. Ottawa 20-30, 50-70, and 125 sands (US Silica, Ottawa, Illinois, USA)  

2. Georgia RP-2 kaolinite (Active Minerals, Cockeysville, MD)  

3. Mine Tailing (Doe Run site, MO) 

4. Mixture of three of above mentioned geo-materials were also used. 

The experimental matrix shows all the testing material and solution (Table 3.1). 

 

Table 3.1 Experimental matrix 

  DI-

water 

PEO SA Agar Xanthan PAM PAA Chitosan 

Concentra 

-tion (g/L) 

  10 2 20 2 2 2 2 2 

Ottawa 

Sand 

20-

30 

Y Y Y Y Y Y Y Y Y 

50-

70 

Y         

125 Y         

Ottawa 

Sand 

mixture 

 Y     Y Y Y  

Mine tailing  Y         

Kaolinite  Y Y        

50-70 sand 

with 

Kaolinite 

 Y         

 

DI water: Deionized water 
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PEO: Polyethylene oxide 

SA: Sodium alginate 

PAA: Polyacrylic acid 

PAM: Polyacrylamide 

The grain size distributions of Ottawa sands 20-30, 50-70 and 125 were shown in 

Figure 3.1 and the sieve analysis result is shown in Table 3.2, Table 3.3 and Table 3.4 

individually. 

 

 
Figure 3.1 Grain size distribution of Ottawa Sand 

 

Table 3.2 Sieve analysis of Ottawa 20-30 sand (Ottawa Sand Manual) 

Sieve No. 
Sieve Diameter 

(mm) 
Percent Retained 

Cumulative Percent Passing 
16 1.18 0.0% 100.0% 
20 0.85 1.0% 99.0% 
30 0.6 97.0% 2.0% 
Pan   2.0% 0.0% 
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Table 3.3 Sieve analysis of Ottawa 50-70 sand (Ottawa Sand Manual) 

Sieve No. 
Sieve Diameter 

(mm) 
Percent Retained 

Cumulative Percent Passing 
40 0.425 0.0% 100.0% 
50 0.3 1.0% 99.0% 
70 0.212 97.0% 2.0% 
Pan   2.0% 0.0% 

 

Table 3.4 Sieve analysis of Ottawa 125 sand (Ottawa Sand Manual) 

Sieve No. 
Sieve Diameter 

(mm) 
Percent Retained 

Cumulative Percent Passing 
200 0.075 0.0% 100.0% 
270 0.053 1.0% 99.0% 
325 0.045 97.0% 2.0% 
Pan   2.0% 0.0% 

 

Table 3.5 Property of RP-2 Kaolinite (Kang, Kang, Bate, 2014) 

  This study 

Soil type Georgia kaolinite 

Source 
Active Minerals 

International, Hunt 
Valley, MD, USA 

Trade name ACTI-MIN RP-2 

Color cream 

Specific gravity 2.6*** 

Liquid limit 54.8 

Plastic limit 32.1 

Main cation Sodium 

CEC (mequiv./100 
g) - 

pH neutral 
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Conductivity 
(mS/cm) 0.07 (10% solids) 

D50 (micron) 0.36*** 

Surface area, m2/g 22 - 35**** 

Max moisture 
content (mass %) 1%*** 

Oil absorption 
(ASTM D 281) 

(g/100g clay) 
40*** 

Slurry consolidation 
pressure (kPa) 100 

Vertical effective 
stress (K0 loading) 

(kPa) 
0 - 800 

Mean effective 
stress (triaxial 
loading) (kPa) 

- 

Void ratio 1.278 - 0.933 

Compression index, 
Cc 

0.49 (0.005 mol/l); 
0.38 (1 mol/l) 

Critical state 
effective friction 

angle (degree) 
19.8 

Testing technique BE 

             Table 3.5 Property of RP-2 Kaolinite (Kang, Kang, Bate, 2014) (cont.) 
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3.2. INDEX PROPERTIES 

Hydrometer analysis tests were performed according to ASTM D422. The 

resulting grain size distribution is shown in Figure 3.2.  

 
Figure 3.2 Grain size distribution of kaolinite and mine tailing by hydrometer test 

 

Atterberg limits tests were performed according to ASTM D4318-05, and the 

results were shown in Tables 3.6 and 3.7, and in Figure 3.3. The liquid and plastic limits 

are 54.83% and 32.08%, respectively.  

 

Table 3.6 PL test result 

Kaolinite 
PL = 32.08% 

Trial  1 2 
Wttare 11.8 11.68 
Total Wtwet 23.64 23.19 
Wtwet 11.84 11.51 
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Total Wtdry 20.81 20.35 
Wtdry 9.01 8.67 
Water Content 31.41 32.76 

Table 3.6 PL test result (cont.) 

 

Table 3.7 LL test result 

Kaolinite 
LL = 54.83% 

Blow Count 17 22 31 39 
Wttare 13.93 14.27 11.88 11.71 
Total Wtwet 29.73 32.65 34.98 28.88 
Wtwet 15.80 18.38 23.10 17.17 
Total Wtdry 23.96 26.06 27.05 23.10 
Wtdry 10.03 11.79 15.17 11.39 
Water Content 57.53 55.89 52.27 50.75 

 

 
Figure 3.3 Blow Count – Water Content relationship 

 



www.manaraa.com

 

 

21 

3.3. BIOPOLYMER SOLUTION PROPERTIES 

A series of biopolymers were used as listed in Table 3.1. Their solutions were 

mixed with geo-materials to modify the water retention capability. Surface tension, 

contact angle, and viscosity of biopolymer solutions were quantified. The procedures are 

shown in the following sections. 

3.3.1. Surface Tension Measurement. Surface tension is a contractive tendency 

of liquid surface which allows it to resist external force. Surface tension is an important 

factor which has a significant impact on the ecosystem. For example, water strider is able 

to float or move along the water surface (Fredlund and Rahardjo, 1993). Microscopically, 

in the liquid, each molecule is attracted equally in every direction by neighboring liquid 

molecules. The molecules at the surface do not have other molecules on all sides of them 

and therefore are pulled inwards. The loss of top forces creates internal pressure and 

forces liquid surfaces to contract, thus forming surface tension. Addition of biopolymer 

molecules will change the existing balance, and yielded different surface tension values. 

For examples, surface active agents (surfactants), such as soap, are well-known in 

reducing the surface tension of aliphatic substances that was attached on clothes, and was 

used widely for detergent.  

Surface tension can be measured in torque method or bubble pressure method. 

The device used for measurement is SensaDyne QC 6000 Surface Tensiometer (Figure 

3.4).  

https://en.wikipedia.org/wiki/Internal_pressure
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Figure 3.4 SensaDyne QC 6000 surface tensiometer (SensaDyne Instrument) 

 

The principle of measurement is applied maximum bubble pressure (Physical 

Chemistry of Surface, Wiley). This method works by blowing a bubble through a liquid 

and measuring the maximum pressure of the bubble. This method is more accurate than 

that of ring tensiometer. The ring method will be affected by surface contamination or 

moving surface. 

In practice, the measurement device uses Nitrogen gas which slowly bubbled 

through two probes of different radii that are immersed in the test fluid. The bubbling of 

nitrogen through two probes produces a differential pressure signal which is directly 

related to the surface tension of the fluid. The two probes should be kept at the same 

immersion depth to eliminate error caused by different amounts of hydraulic head at the 

probes. In this process, air is pumped through a capillary in the liquid to be analyzed. A 

special sensor measures the internal pressure of the developed bubble on the capillary 

peak. The dynamic surface tension is calculated by making up the difference of the 

maximum and minimum bubble pressure and the usage of the calibration factor k: 

(Manual for SensaDyne QC 6000) 

*k p                                                    Eq. 3.1 
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max minp p p                                            Eq. 3.2 

After calibration the device with deionized water and alcohol, the calibration 

factor will be automatically stored by computer program. The measurement results are 

shown in Table 3.8. 

 

Table 3.8 Surface Tension measurement results 

Solution 

Concentration 

(g/L) 

Test 1 

(dyne/cm) 

Test 2 

(dyne/cm) 

Test 3 

(dyne/cm) 

Average 

(dyne/cm) 

Deionized 
Water 0  73.1 73 73.1 73.1 
PEO 1 63.8 63.7 63.8 63.8 
PEO 10 61.7 61.9 61.7 61.8 
SA 2 77.3 77.2 77.2 77.2 
SA 20 80.5 80.5 80.5 80.5 

Agar 2 76.1 76 76.1 76.1 
Chitosan 2 74 74 74 74.0 

PAA 2 74.2 74.1 74 74.1 
PAM 2 76 76.2 76.1 76.1 

Xanthan 2 76 75.9 76.1 76.0 
 

 

3.3.2. Contact Angle Measurement. Where a liquid/vapor phase meets a solid 

phase meets, such as water on a glass plate, the interface forms a contact angle. Contact 

angles are extremely sensitive to surface contamination. Values of contact angle can be 

only obtained under laboratory conditions with purified liquids and very clean solid 

surfaces. If the liquid molecules are strongly attracted to the solid molecules then the 

liquid drop will completely spread out on the solid surface and therefore corresponding to 

a contact angle of zero degree. Generally, if the water contact angle is smaller than 90°, 

the solid surface is considered hydrophilic. Otherwise, it is hydrophobic. 

Many polymers exhibit hydrophobic surfaces. 

The solid surface condition of test is quartz (Fisher Scientific), which is also the 

major component of Ottawa sands in this study. Table 3.9 contains all the sand property 

information from US silica and Chemglass. 

 

https://en.wikipedia.org/wiki/Contact_angle
http://en.wikipedia.org/wiki/Hydrophile
http://en.wikipedia.org/wiki/Hydrophobe
http://en.wikipedia.org/wiki/Polymer
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Table 3.9 Chemical property of Ottawa sand (from US Silica and Chemglass data) 

  Percent of SiO2 

Quart Slide (Chemglass) 99.8% 
20-30 Ottawa Sand 99.8% 
50-70 Ottawa Sand 99.7% 
125 Ottawa Sand 99.7% 

 

The main element for Ottawa sand and quartz slide are both SiO2, the same 

chemical material will provide the same surface condition which is the reasonable 

replacement for Ottawa sand. 

Sessile drop method was used to measure contact angle. By using sessile drop, the 

spreading of solution can be avoided and therefore get a better result. Contact angle was 

measured by a contact angle goniometer with an optical system to capture the profile of a 

high purity liquid on a solid surface such as quartz slide (Wikipedia, 2014). The angle 

formed between the liquid/solid interface and the liquid/vapor interface is the contact 

angle. The current generation goniometer equipped with high resolution cameras and 

software to capture and analyze the contact angle (Figure 3.5). Table 3.10 listed all the 

measurement value of contact angle. 

 

 
Figure 3.5 Rame-hart goniometer (Wikipedia, 2014) 

http://en.wikipedia.org/wiki/Sessile_drop_technique
http://en.wikipedia.org/wiki/Goniometer
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Table 3.10 Contact angle measurement results 

Solution 

Concentration 

(g/L) 

Test 1 

(degree) 

Test 2 

(degree) 

Test 3 

(degree) 

Test 4 

(degree) 

AVG 

(degree) 

Deionized 
Water   38.4 37.5 38.2 38.1 38.1 
PEO 1 39.9 39.2 39.4 39.9 39.6 
PEO 10 37 37.5 37.1 37.3 37.2 
SA 2 40.5 40.5 40.7 40.8 40.6 
SA 20 41 41.6 41.2 41.3 41.3 

Agar 2 37.7 37.1 37.9 37.8 37.6 
Chitosan 2 31.6 31.5 31.9 31.8 31.7 

PAA 2 38.6 38.9 38.4 38.3 38.6 
PAM 2 21.1 21.2 21.5 21.4 21.3 

Xanthan 2 34.5 35.1 35 34.7 34.8 
 

3.3.3. Viscosity Measurement. The solutions’ viscosity values are measured by 

Anton Paar MCR302 rheometer under room temperature and normal pressure. Spindle 

rotation method is the normal measurement been used for viscosity test. This method 

requires the condition of solution is uniform. Since solubility of each biopolymer is not 

same therefore some of the solutions have suspensions inside so spindle method is not 

operational. The testing device provides another method called peddle plate method to 

measure the viscosity of suspension solution. The principle of this method is measuring 

the torque of the top peddle plate and transfer torque into shear stress. The rotation 

velocity will be transferred to shear rate. All the measurement, data collection and 

interpretation will be finished by computer program automatically.   

The following Figure 3.6 exhibits the relationship between shear rate and shear 

stress. 
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Figure 3.6 Relationship between Shear rate and Shear stress 

 

According to Figure 3.6, 2 g/L PAA solution has shear thinning phenomenon. It 

means the viscosity of this fluid is variable corresponds to shear rate. Figure 3.7 provide 

the information of Viscosity – Shear rate relationship. 
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Figure 3.7 Relationship between Shear rate and Viscosity 

 

According to Figure 3.7, PAA and Xanthan solution belong to shear thinning 

solution and the others are Newtonian Solution. 

3.3.4. Determination of Viscosity Value. Through the viscosity measurement, a 

series of viscosity data is obtained under different shear rate. For each individual SWCC 

test, the viscosity value should be in a small range which is variable with degree of 

saturation. The appropriate value of viscosity should be used for future analysis. 

3.3.4.1 Shear rate conversion method. Shear rate can be approximately 

estimated through Outflow – Time relationship. Table 3.11 exhibits the shear rate 

conversion process. The approximate equation for shear rate (SR) calculation is: 

Q V
SR

A t r




 
                                                         Eq. 3.1 

50

10
D

r                                                                  Eq. 3.2 

Where, 
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Q is flow rate (ml/s). 

V is volume of solution (ml). 

A is cross-section area (cm2). 

t is time (s). 

r is pore size (mm). 

D50 is the average of grain size (mm). 

 

Table 3.11 Shear rate conversion results 

  grain size (cm) 

pore size 

(cm) Area (cm
2
) Time (s)   

  0.06 0.006 22.79666667 30   

  
Concentration 

(g/L) 

Suction 

(kPa) 

Volume 

(ml) Q (ml/s) SR (1/s) 

Water 
 

1.000 0.167 0.00556667 0.092249 
SA 20 20 50.000 0.050 0.00166667 0.027619 
PAA 2 2 6.890 0.340 0.01133333 0.187812 
PAM 2 2 3.450 0.100 0.00333333 0.055239 

Chitosan 
2 2 2.000 0.083 0.00276667 0.045848 

Agar 2 2 2.000 0.030 0.001 0.016572 
SA 2 2 2.067 0.200 0.00666667 0.110477 

PEO 1 1 1.000 0.012 0.0004 0.006629 
PEO 10 10 1.000 0.012 0.0004 0.006629 
Xanthan 

2 2 2.000 0.030 0.001 0.016572 
 

From Table 3.11, all the conversion of shear rate is range from 0.001 to 0.1 s-1. 

The value is smaller than the accuracy of the test machine. The viscosity measurement 

result for low shear rate will become negative value. The torque measurement device is 

not sensitive enough to measure this low value. 

3.3.4.2 Viscosity value for future test. Since the shear rate for SWCC test is 

really low and the lowest value can be got from the test machine is 0.1 s-1 .So the 

viscosity value for future test should be taken the lowest shear rate which maintain the 

viscosity in a positive value. Table 3.12 listed all the value for future test usage. 
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Table 3.12 Viscosity value for future test 

Solution 

Concentration 

(g/L) 

Viscosity 

(Pa*s) 

Xanthan 2 0.344 
SA 20 0.3 
SA 2 0.0039 

PAA 2 1.39 
PAM 2 0.00043 

Chitosan 2 0.0024 
PEO 1 0.00018 
PEO 10 0.0112 
Agar 2 0.00126 

DI Water 0 0.001 
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4. FREDLUND SWCC METHOD AND PRECAUTIONS 

4.1. MEASURING DEVICE FOR SWCC 

Suction in soil can be measured through many techniques, such as WP4 

tensiometer (Decagon Devices, Pullman, WA), filter paper method (Fredlund and 

Rahardjo, 1993), and ceramic disk-based method, such as Fredlund SWCC device (GCTS, 

Tempe, Arizona), pressure plate (Fredlund and Rahardjo, 1993), and Tempe cell 

(Soilmoisture, Santa Barbara, CA).  

Ceramic disk-based method was used to determine the soil SWCC at suctions 

below the air entry value (the pressure for air to enter the ceramic disk and continue to 

the soil) of the ceramic disk, which is usually below 1,500 kPa (Fredlund and Rahardjo, 

1993). Two devices were used in this study: One is the GCTS Fredlund SWCC device 

(GCTS, Tempe, Arizona), and the other is Tempe cell (Soilmoisture, Santa Barbara, CA). 

The air entry value of the ceramic disk in Fredlund SWCC device and Tempe cell are 

1,500 kPa and 130 kPa, respectively. The positive airpressure applied to the soil sample 

will not be able to exceed the air entry value of the ceramic disks, exceeding which air 

will break through the disk and enter the pressurized water chamber.  

The Fredlund cell is used to measure SWCC of fine-grained soils, such as clay 

and silt. Because fine-grained soils with high fines content tend to have higher air entry 

value, and require high matric suction to drain out the aqueous solutions, the ceramic disk 

of high air entry value, such as 1500 kPa, is often needed. On the contrary, tempe cell is 

usually used for coarse-grained soils, such as sand and sandy silt, which normally have 

low air entry value due to the larger pore size than fine-grained soils. So ceramic disks 

with an air entry value of 130 kPa were used.  

 

4.2. PROCEDURES FOR SWCC TEST 

The soil materials used in this study are Georgia kaolinite (RP-2, ActiveMinerals, 

Cockeysville, MD), mine tailing (Doe Run site, MO), and Ottawa 20-30, 50-70, and 125 

sands (US Silica, Frederick, MD). Biopolymers used in this study are PEO, PAM, PAA, 

Agar, Xanthan, Chitosan, Sodium Alginate (SA). Detailed index properties of these 

materials were measured as shown in Section 3.  
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4.2.1. Sample Preparation of Fine-grained Soils. Biopolymer powder was 

dissolved in flask at prescribed concentrations (Table 4.1) before use.  

 

Table 4.1 Concentration of biopolymer solution 

Biopolymer Concentration (g/L) 

PAM 2 
PAA 2 
PEO 10 

Xanthan 2 
Chitosan 2 

Agar 2 
Sodium 
Alginate 2 
Sodium 
Alginate 20 

 

Some biopolymers with high molecular weight will take at least 24 hours to 

become a uniform solution, in which case, ultrasonic bath was used to facilitation 

dissolution. Soil samples were first mixed with biopolymer solution. The mixture was 

then mixed manually and soaked for at least overnight. After mixed for 30 minutes, the 

slurry was let stand overnight as suggested by Fam and Santamarina (1995) to ensure that 

all the kaolinite particles were allowed to hydrate. Then the slurry was poured into a 

stainless steel consolidation tube (Diameter 2.5 in., height 6 in., Figure 4.2) with the 

sample ring connect at the bottom of the tube. Care should be taken not to generate any 

air by pouring slurry on side of the tube. Before loading on the slurry, the tube is covered 

with filter paper on top and bottom to make the sample double drained. The slurry was 

one-dimensional consolidated with load increasing from 6 to 50 kPa and then unloading 

to 0 kPa. Load will be gradually put on to prevent the slurry from pressing out from the 

small gap between porous stone and steel tube. One dimensional odometer (Figure 4.1, 

Humboldt, IL) is used for sample preparation. By using LVDT (Figure 4.1, Humboldt, IL) 

to measure the vertical displacement and vertical load is controlled by air pressure. 

Consolidation curve is determined by square-root time method. Taylor’s square root time 

fitting method is used to check if this sample is finished consolidation under load. It is 

followed by unloading process after the soil sample get to the pre-consolidation pressure 
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which is 50 kPa. If loading is completely removed from sample, it will tend to expand 

and suck water from the top and bottom in order to keep the sample fully saturated. So 

the unloading process will follow the reverse of loading sequence. The same like what 

had been done on slurry compressing. The total mass of ring and soil were weighed. 

Initial water content of the soil sample can be determined by oven drying method on the 

remaining soil mass.  

 

 
Figure 4.1 Humboldt consolidation device and LVDT 
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Figure 4.2 stainless steel sample preparation tube 

 

4.2.2. Sample Preparation of Sand. Comparing to soil sample preparation, sand 

does not require pre-consolidation pressure. Sand is added into tempe cell without any 

compaction. To ensure all sand samples are in same initial condition, the mass of sand for 

each sample is 109g (void ratio e=0.718). Tempe cell will be filled with this amount of 

sand. Then add the biopolymer solution through the surface of tempe cell until the sample 

in saturation condition. Since there is no compaction for sand sample, the sand is in loose 

condition. 

 

4.3. SWCC TEST 

Before setup SWCC test, a ceramic disk with appropriate air entry value (AEV) 

was selected based on the soil type. For fine-grained materials, such as kaolinite and 

tailings, higher suction is expected to reach the residual water content. Therefore, high air 

entry value disk of 1,500 kPa was used to allow a matric suction range of 0 to 1,500 kPa. 

The presence of air in the ceramic disk could significantly increase the volume reading of 

the outflow water due to the high compressibility of air. Therefore, ceramic disk must be 

de-aerated before usage. Based on the recommendation by the manufacturer, the disk was 

soaked in de-aerated water overnight to ensure saturation. 
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The soil sample in the steel ring was then placed on the ceramic disk. A good 

contact between the ceramic disk and the soil sample should be carefully guaranteed, so 

that there is no entrained air at the interface. The excess water that might remain on the 

surface of the ceramic disk was carefully removed with a lint free tissue (Kim-Wipe, 

AMTS Inc.). The stainless steel chamber was then sealed.  

Loading shaft with a cap inside Fredlund cell is put in contact with the soil sample 

to measure the possible shrinkage deformation induced by the applied matric suction. A 

small dead weight (0.38 kg) was used to apply a seating load to measure possible 

shrinkage of high compressible geo-materials.  

Air pressure (ua) was then applied inside the sealed stainless steel chamber, while 

the water chamber underneath the ceramic disk was open to the atmospheric pressure (uw 

= 0). Matric suction  was calculated by:  

a wu u                                                           Eq. 3.1 

Matric suction was increased to further de-saturate the specimen. The steps of 

matric suctions experimental matrix for SWCC tests with Fredlund SWCC device is 

shown in Table 4.2.  

Table 4.2 Step of matric suction 

Suction Step Air pressure/Matric Suction (kPa) 
1 0.01 
2 0.1 
3 1 
4 2 
5 4 
6 25 
7 50 
8 100 
9 200 
10 500 
11 1000 

 

The outflow volume readings from the two vertical burettes were monitored over 

time visually. These two burettes were calibrated with a beaker (Fisher Scientific) and a 

balance (Ohaus) before usage. The cross section area of these two glass burettes were 

determined to be 0.119 cm2 and 0.74 cm2, respectively. 
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4.3.1. SWCC Measurement under Low Matric Suction. The accuracy of the 

Fredlund SWCC device is +/- 1 kPa. However, the air entry value for coarse grained 

soils, such as sands, is often below 1 kPa. This requires accurate matric suction as low as 

0.05 kPa to delineate the low suction range. In order to measure the accurate water 

outflow at lower suction, Li and Zhang (2009) proposed a new design meet such 

requirement. The key of their design is to lower the outflow water level to create low 

suction (0.05 – 5 kPa). Atmospheric pressure was maintained at both inside the stainless 

steel chamber and the open end of the outflow tube. So the matric suction equals to the 

negative pore water pressure created by the lowered water column. This design was 

revised for this study (Figure 4.3). The outflow volume reading is through a long glass 

tube (cross-section area 0.119 cm2).  

 

 
Figure 4.3 Schematic setup of low suction device for SWCC measurement 

 

As shown in the photo, the elevation of tube is adjusted by the regulator of lab 

jack. On the left side of the lab jack, there is a ruler attached to the system and it is used 
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for locating the horizontal tube in accurate elevation. The horizontal tube is fixed with the 

ruler behind it which will provide the water flowing rate and volume. 

4.3.2. Air Diffusion Correction. According to Henry’s Law, air can dissolve in 

water. Since air pressure is applied to the sample, readings from vertical tube showing the 

volume of water. While water keep passing the ceramic disk, air diffused in water is also 

expelled. So every 4-6 hours, flush will be needed to flow away those air bubbles. 

Because accumulated air bubbles will affect the water expelling rate and volume 

measurement. 

4.3.2.1 Fredlund cell flush. Since air bubbles are accumulated underneath the 

ceramic disk, the volume of water will be overestimated. To fix this problem, flushing is 

being used to decrease the effect of air bubbles. An empty water bottle is enough to flush 

the ceramic disk. First, connect the outlet of water bottle with one of the vertical burette. 

Second, compressing the empty bottle to make the water column inside vertical tube 

flowing back and forth through the water tank beneath ceramic disk. Repeating this 

process several times and the air bubbles will be pressed out. It was recommended by 

Manual that flushing will be needed every 4-6 hours. 

4.3.2.2 Horizontal tube flush. The flushing process for horizontal tube is almost 

the same with Fredlund cell. The only difference between these two devices is that 

horizontal tube connects with water tank through a Swagelok. Before flushing, the 

horizontal tube should be sealed first and then open the two vertical burettes. The 

remaining procedures are the same with Fredlund cell. After flushing, close two vertical 

burettes and reopen the sealed horizontal tube. 

4.3.3. Outflow for Each Matric Suction. The outflow versus time curve for 

every matric suctions are plotted. When a plateau in outflow volume was reached, the 

degree of saturation was considered reached at the specific matric suction condition. 

Then the next matric suction was applied. Before increasing air pressure and measure 

next data point, the height change of the sample was measured. The volume change 

during SWCC test for mine tailing is shown in Table 4.3.  
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Table 4.3 Sample volume change measurement 

Matric Suction 

(kPa) 

Height of sample 

(cm) 

0.01 2.54 
0.1 2.54 
1 2.54 
2 2.54 
4 2.54 

17.6289 2.54 
45.39491 2.54 
97.47883 2.49 

197.787845 2.49 
497.72408 2.49 
997.6456 2.49 

 

Since the change of sample height is only 0.5 mm which can be neglected. But if 

the volume of test sample changes a lot, the volumetric water content will be recalculated 

by using the new sample volume. 

Above procedure was repeated for each matric suction value until the maximum 

applied matric suction, i.e., 1000 kPa.  

After the completion of the last matric suction value, total mass of the ring and the 

soil was measured. Then the dry weight of the soil was measured by oven-drying method. 

As a result, the water content at the end of the last matric suction can be calculated. The 

summation of the total water outflow volume and the total water volume remained in the 

soil sample at 1000 kPa should be equal to the initial water volume. The difference, if any, 

was calculated to double-check the quality of the results. Table 4.4 shows the example 

calculation of mine tailing water remaining back calculation result. The difference 

between the initial total water volume and the summation of expelled water and residual 

water in the soil sample is 1.03 g (Table 4.4). This is less than 3% of the initial total water 

volume, and the difference is considered negligible. The difference was attributed to the 

slight water expelling from the ceramic disk. 
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Table 4.4 Sample back calculation 

Matric Suction (kPa) 

volume of water 

(ml) 

0.01 0.01785 
0.1 0.02142 
1 0.0119 
2 0.6069 
4 0.55454 

17.6289 3.33 
45.39491 10.064 
97.47883 5.994 

197.787845 2.516 
497.72408 0.962 
997.6456 0.888 

Total expelling Water (ml) 24.96661 
Total water in sample (ml) 35.06 

Calculated water remained in 
sample (ml) 10.09339 

Measured water remained in 
sample from oven drying (g) 11.12 

Difference (g) 1.03 
Difference (%) 2.9% 

 

4.3.4. Calibration of Cross-section Area. To accurately measure the outflow 

water volume, the inner cross-section areas of all the tubes and burettes need to be 

calibrated. The tube or the burette was first filled with de-aerated water. Then a 

significant amount of water was drained out into a beaker with known weight. This test 

was repeated three times, and the average value of inner cross-section area was used. The 

weight of the water and the beaker was measured with an accurate balance (Ohaus). Then 

the weight and the volume of drained water can be calculated. The expelling water length 

before and after the water drainage was measured by a ruler. The cross-section areas of 

the vertical burette in the Fredlund SWCC device and the horizontal tube in the elevation-

controlled low suction device were calculated to be 0.119 cm2 and 0.74 cm2, respectively. 

The results and the calculation were tabulated in Tables 4.5 and 4.6.  
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Table 4.5 Horizontal Tube Calibration 

Initial water 

length (cm) 

Final water 

length (cm) 

mass of releasing 

water (g) inner area (cm
2
) 

96 71.4 2.8989 0.118 
71.4 33.3 4.5331 0.119 
33.3 1.7 3.7939 0.120 
    avg 0.119 
98.95 63.72 4.2312 0.120 
63.72 25.25 4.6109 0.120 
25.25 0.88 2.8685 0.118 
    avg 0.119 
99.48 78.77 2.4734 0.119 
78.77 49.68 3.4764 0.120 
49.68 1.2 5.7345 0.118 
    avg 0.119 
    Final Average Value 0.119 

                                          

Table 4.6 Vertical Tube Calibration 

Left 

Tube 

Initial water 

length (mm) 

Final Water 

length (mm) 

mass of water 

(g) 

inner area 

(cm
2
) 

1 28.4500 15.6000 9.152 0.71 
2 15.6000 7.0500 5.897 0.69 
3 7.0500 .3000 4.920 0.73 
Right 

Tube 

Initial water 

length (mm) 

Final Water 

length (mm) 

mass of water 

(g) 

inner area 

(cm
2
) 

1 25.9500 18.2500 6.673 0.87 
2 18.2500 10.0000 5.845 0.71 
3 10.0000 1.2500 6.231 0.71 
      Final Value 1.47 

 

4.3.5. Evaporation Calibration. Water will evaporate if exposed to the 

atmosphere. As a result, the measurement of water volume will decrease. The rate of 

evaporation is affected by three conditions: temperature, water surface area and the flow 

rate of air. Because the test is performed in laboratory, temperature is relatively stable (22 

- 24 oC). The surface areas of water column in vertical burettes and horizontal tube are 

0.74 and 0.119 cm2, respectively. The air flow in this room can be treated as a steady 

state flow. So the flow rate is constant. It can then be concluded that the rate of 

evaporation is constant.  
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The evaporation of the horizontal tube in low-suction SWCC setup can be 

estimated as follows. Fill in water and mark the beginning reading of horizontal tube. 

Then take readings from the tube every 2-3 hours up to a total time of 20 hours. The 

average value of evaporation correction is 0.10 cm/hour (Table 4.7), which corresponding 

to a 0.286 cm3/day. The standard deviation is 0.99% (Table 4.7). 

 

Table 4.7 Evaporation rate results 

Time (h) 

tube reading 

(cm) 

Evaporation Rate 

(cm/h) 

0 57.45 
 3.3 57.11 0.103030303 

5 56.92 0.111764706 
8 56.59 0.11 
20 55.51 0.09 
  Average 0.103698752 

 

For Fredlund SWCC device, the openings of the two burettes are essentially 

closed to the air. Therefore the evaporation is negligible. 
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5. EXPERIMENTAL RESULT OF SWCC 

In this section, SWCC results from both GCTS Fredlund SWCC device and 

Tempe cell were presented. In addition, Fredlund and Xing (1994) and van Genutchen 

(1980) SWCC equations were used to fit these laboratory measured SWCC results. Least 

square method was applied by the SOLVER function in Microsoft EXCEL. The 3 fitting 

parameters in both Fredlund and Xing (1994) model (a, m, n) and van Genutchen (1980) 

model ( ,   ,   ) were independently fitted. The results were divided into five groups, 

namely:  

i). Uniform sand with water (Ottawa 20-30, 50-70, 125 sands) 

ii). Uniform sand with biopolymer solutions (Ottawa 20-30 sand) 

iii). Uniform sand mixture with biopolymer solutions (Ottawa 20-30 and 57-70 

sands, weight ratio 1:1) 

iv). Kaolinite with both water and PEO solutions 

v). Mine tailing with water 

Each group contains SWCC result, curve fitting parameters for two models and 

pore size distribution. The lines inside SWCC figure is not fitted results, they are for 

visual illustration purpose only. All the curve fitting lines are included in Appendix A. 

 

5.1. CAPILLARY PORE SIZE DISTRIBUTION 

Capillarity is the main reason caused water sneak inside the pore space between 

each grain. Pore size can be calculated through this equation below, 

2 cossT
r





 
                                                    Eq. 5.1 

Where, 

r, pore size; 

Ts, surface tension; 

 contact angle; 

matric suction. 

From SWCC result, the amount of water stored inside of pore can be quantified. 

The volume of water expelled under each matric suction step equals to the total volume 
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of pore space. The radius of pore size can be calculated through Eq. 5.1 (Lu and Likos, 

2006). Total volume of a specific pore size under matric suction will be divided by total 

expelling water which will be normalized into weight fraction. So each matric suction 

correlate to a specific pore size and the normalized weight fraction can be determined 

which indicate the pore size distribution of soil sample. This method is used to analyse 

the effect of biopolymer modification.   

 

5.2. SWCC RESULTS OF GRADED SAND WITH WATER 

SWCCs and pore size distribution of three uniform sands, i.e., Ottawa 20-30, 50-

70 and 125 sands, were shown in Figure 5.1 and 5.2. The D50 of each sand was listed in 

Table 5.1. It was found that as the D50 decreased, air entry value increased and the 

residual metric suction increased. This is because smaller particle size leads to smaller 

pore size, which requires higher matric suction to move the water in the soils (Eq. 2.1). 

This observation was further validated by the fitted a and n values in Fredlund and Xing 

(1994) SWCC model (Table 5.2 and Figure 2.4 and 2.5). In addition,  parameters, 

which is approximately equal to the inverse of AEV, in van Genutchen (1980) model also 

decreased as D50 decreased. 

 

Table 5.1 D50 of graded Ottawa sands 

Sand  

D50 

(mm) 

Ottawa 20-30 sand 0.7 
Ottawa 50-70 sand 0.23 
Ottawa 125 sand 0.05 
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Figure 5.1 SWCC for different gap graded Ottawa Sand with water 

 

 
Figure 5.2 pore size distribution of sand with water 
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Table 5.2 fitting parameter for different uniform sand 

Fredlund and 

Xing a m n 
Van 

Genutchen δ λ η 
Ottawa Sand 

20-30 0.69 1.39 4.90 
Ottawa Sand 

20-30 1.98 0.23 7.16 
Ottawa Sand 

50-70 2.18 0.63 16.39 
Ottawa Sand 

50-70 0.51 0.02 152.73 
Ottawa Sand 

125 34.16 0.90 2.75 
Ottawa Sand 

125 
6.30E-

04 218.40 0.73 
 

 
Figure 5.3 fitted parameter AEV and residual water content 

 

5.3. SWCC RESULT OF GRADED SAND WITH BIOPOLYMER 

5.3.1. Unimodel SWCC Result. Unimodel SWCC curves for Ottawa 20-30 sand 

with five different types and concentrations of biopolymers (PAA 2g/l, SA 2g/l, SA 20 

g/l, xanthan gum 2 g/l, and PEO 10 g/l) were observed and plotted in Figure 5.4.  
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Figure 5.4 SWCC result for uniform sand with biopolymers 

 
Figure 5.5 pore size distribution of uniform sand with biopolymers 
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Table 5.3 exhibits all the curve fitting parameters. From Figure 5.4, AEV was 

increased by all biopolymers except for 10 g/l of PEO solutions. This trend agrees with 

the fitted a parameter from Fredlund and Xing (1994) model. The reason is attributed to 

the reduced pore throat size by the attachment of biopolymers on the sand surface. This 

“clogging effect” can be illustrated in Figure 5.6 and 5.7 (SEM).  

 

 
Figure 5.6 SEM image of Ottawa 20-30 sand with 2 g/l of xanthan gum 
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Figure 5.7 SEM image of Ottawa 20-30 sand with 20 g/l of SA 

 

From these two figures above, the pore size generated from sand particle is 

decreased. It is caused by the coating effect of biopolymers. Biopolymers attached on the 

surface of sand particles, it will decrease or block the pore which lead to a higher AEV 

and residual water content. The surface-attached biopolymers can also increase the 

residual matric suction by clogging the smaller pores of the soils. It was also observed 

that large biopolymers, such as xanthan gum and sodium alginate (SA), had higher 

residual volumetric water content.  

SA passing ceramic disk test was performed. 30 g of SA 20g/L was added into 

tempe cell and applied air pressure on top of the surface. The mass of SA passing through 

disk will be measured by a weight balance below the cell. Part of these large biopolymers 

might not be able to pass the small pore channel in the ceramic disk. Figure 5.8 shows the 

amount of SA 20g/l solution passing through ceramic disk at different matric suctions 

(total mass of the solution was 30 g).  
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Figure 5.8 Amount of SA passing through ceramic disk at different matric suctions 

 

Table 5.3 Curve fitting parameters for unimodel SWCC results 

Fredlund 

and Xing a m n 
Van 

Genutchen δ λ η 
PEO 10 0.398 0.757 9.486 PEO 10 3.380 0.012 120.000 

Xanthan 2 0.974 0.147 154.889 Xanthan 2 1.149 0.102 24.151 
SA 20 31.507 0.122 8.390 SA 20 0.035 0.067 14.952 
SA 2 0.960 0.097 28.356 SA 2 1.156 0.044 27.411 

PAA 2 1.772 1.626 1.475 PAA 2 0.002 276.630 1.179 
water 0.691 1.391 4.897 water 1.983 0.226 7.166 

 

5.3.2. Bi-model SWCC Results. Bimodal SWCC results were observed with 2 

g/l solutions of Agar, chitosan, and PAM (Figure 5.7). Zhang and Chen (2005) used the 

bimodal form of Fredlund and Xing (1994) SWCC curves to fit gap-graded coarse 

grained soils. Similar method was used in this study. The weight, p, of each SWCC 

model was the relative volumetric water content. n represents porosity of each material. 

r  equals to 1500 kPa.   is matric suction. The equation is: 
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    Eq. 5.1 

Where, 

: water content under different matric suction. 

The fitting results were shown in Table 5.3. The gap in matric suction, ranging 

from 2 to 25 kPa, suggested that morphology of the original Ottawa 20-30 sand was 

changed. This can also be related to the surface tension and contact angle changes due to 

biopolymer.  

 

 
Figure 5.9 Bimodel result of Ottawa sand 20-30 with biopolymer 
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Figure 5.10 pore size distribution of bimodel result 

 

 

Table 5.4 Bimodel fitting parameters 

Fredlund and 

Xing al ml nl as ms ns 
Agar 2 0.994 0.800 104.149 25.197 0.314 500.000 

Chitosan 2 1.000 0.800 104.149 25.197 0.314 500.000 
PAM 2 1.015 1.768 104.150 25.345 0.263 500.002 
water 0.691 1.391 4.896       
Van 

Genutchen δl λl ηl δs λs ηs 
Agar 2 0.719 2.185 5.317 0.020 2.438 14.712 

Chitosan 2 1.034 0.090 70.345 0.020 3.151 20.751 
PAM 2 1.020 0.096 73.100 0.020 3.165 10.000 
water 1.983 0.225 7.165       
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5.4. SWCC RESULT OF GRADED SAND MIXTURE WITH BIOPOLYMER 

The first major desaturation occurs at matric suction of about 1 kPa for sand 

mixtures with either water or biopolymer solutions. However, the rate of the first 

desaturation for sand mixture with biopolymers is lower than that for sand mixture with 

water. This is an indication of wider pore size distribution for sand mixture with 

biopolymer solutions. The presence of residual volumetric water content indicates either 

the presence of smaller flow channels (pores) or higher viscosity induced by biopolymer 

solutions. 

 
Figure 5.11 SWCC result of sand mixture with biopolymer 
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Figure 5.12 pore size distribution of sand mixture with biopolymer 

 

Table 5.5 Sand mixture fitting parameters 

Fredlund and 

Xing al ml nl as ms ns 
PAA 2 3.400 10.000 100.000 64.280 2.336 10.270 
PAM 2 2.141 0.654 3.736       

Xanthan 2 1.825 0.454 4.333 7.000 0.055 250.000 
water 17.688 289.936 2.394       

Van Genutchen δl λl ηl δs λs ηs 
PAA 2 0.320 2.100 22.000 0.017 2.500 19.230 
PAM 2 0.042 47.019 2.253       

Xanthan 2 0.577 0.281 5.048 0.158 0.014 65.279 
water 0.055 143.898 2.475       

 

5.5. SWCC RESULT OF FINE-GRAINED MATERIALS 

SWCCs of kaolinite, kaolinite with 0.1g/l PEO and mine tailing are shown in 

Figure 5.9. Fitting parameters are listed in Table5.5. Mine tailing has less AEV than 

kaolinite does, because its grain size is larger than that of kaolinite (Figure 3.2). Addition 

of PEO to kaolinite reduced the AEV, this is due to the enhanced 

aggregation/agglomeration effects of PEO, which is a good dewatering agent used in 
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mining industry (Mpofu et al., 2004). Due to the AEV limitation of the available ceramic 

disk (maximum at 1500 kPa), SWCCs of kaolinite and kaolinite with PEO were not fully 

inspected. On the other hand, mine tailing seems to reach its residual state (Figure 5.9). 

As a result, mine tailing was used as an example in inverse numerical simulation as 

shown in Section 6.  

 
Figure 5.13 SWCC result of fine-grained material 
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Figure 5.14 pore size distribution of fine-grained material 

 

Table 5.6 Fitted parameters of Kaolinite, 125 sand and mine tailing 

Fredlund 

and Xing a m n 
Van 

Genutchen δ λ η 
Kaolinite 199.061 0.013 440.000 Kaolin 0.008 0.023 3.408 
Kaolinite 

PEO 90.48 0.019 51.27 
Kaolinite 

PEO 0.0062 10.49 1.23 
Kaolinite 50-

70 sand 3.97 0.15 120 
Kaolinite 50-

70 sand 0.99 13.23 4.99 
50-70 sand 2.18 0.63 16.39 50-70 sand 5.21 0.015 151.73 
125 sand 34.16 0.903 2.75 125 sand 0.0064 218.4 1.73 

Mine Tailing 18.019 0.526 2.894 Mine Tailing 0.037 0.623 2.105 
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6. NUMERICAL PREDICTION OF SWCC 

6.1. FINITE ELEMENT METHOD (FEM) PREDICTION WITH HYDRUS 1D 

6.1.1. Fundamental Theory. Hydrus 1D, a finite element code developed by 

Simunek and van Genuchten in 1980s, was used to numerically simulate the measured 

soil water characteristic curve (SWCC) results of selected geomaterials as used in this 

study. Hydrus 1D is powerful in solving a variety cases of two-phase flow and chemical 

transportation in porous media. Wayllace and Lu (2012) used it for estimating SWCC 

with a transient water release and imbitions method (TRIM) for rapidly measuring 

wetting and drying SWCC and hydraulic conductivity functions. The input is the outflow 

vs. time curves at only two suction values, one near air entry value (AEV) and one that 

can induce significant volumetric water content change. Then the SWCC were inversely 

solved by Hydrus 1D. Hopmans et al. (2002) and Figueras (2009) also stated that 

multistep outflow method (MOM) could be used to estimation hydraulic conductivity.  

 

The theoretical foundation of Hydrus 1D simulation is Richards’ equation: 

  1K
t z z

 


     
   

    
      Eq. 6.1 

Where, 

K is hydraulic conductivity 

h  is the pressure head, or matric suction 

z   is the elevation above vertical datum 

is water content 

t   is time 

 

Richards’ equation (Richards, 1931) describes the movement of water flow in 

unsaturated soils. Compared to Darcy’s Law, Richards’ equation is a transient state form 

of flow equation. 

Mass balance, which dictates that the changing rate of saturation is equal to 

changing rate of total fluxes in and out of porous media, is satisfied. SWCC models are 

required to solve Richards’ equation. 
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There are several available SWCC models in Hydrus 1D simulation. Van 

Genuchten model (1980) was used in this study. The equation was shown in Eq. 6.2, and 

was repeated below for clarity: 

 1
s r

r m
n

h

 
 




 

 
 

                                              Eq.6.2 

Van Genuchten (1980) proposed a relative hydraulic conductivity function for 

unsaturated soils: 

   
2

1/1 1
m

l m

s e eK h K S S   
  

                                  Eq.6.3 

With given initial and boundary conditions, SWCC can be inversely solved with 

known outflow rate vs. time results. 

6.1.2. Hydrus 1D. Hydrus 1D is one-dimentional finite element software 

designed by Jikra Simunek and van Genutchen (1991). Since it is one dimentional, the 

element is just on node. The simulated soil sample is discrete into one hundred nodes 

with uniform vertical distance. 

 

6.1.3. Procedure of Prediction. SWCC results for mine tailing were used as an 

example to illustrate the procedures to predict SWCC curves. 

6.1.3.1 Initial estimation of parameters. Hydrus 1D requires five parameters to 

inversely calculating SWCC, i.e., s, r, a, n, and Ks: 

Where, 

s is the saturated volumetric water content of soil;  

r is the residual volumetric water content after SWCC test; 

a is the parameter for SWCC model which represents the inverse of air-entry value 

(AEV); 

n is the other parameter for SWCC model, it controls the slope of major desorption curve 

which is the middle dramatically changing part of SWCC; 

Ks is the saturated hydraulic conductivity. 

Hydrus 1D allows assigning initial estimated values, as well as confining the 

range of variation for above parameters. Those input information are based on 
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experimental results and previous studies in the literature. s can be determined from 

phase relationship before testing. Through applying small suction values to soil sample 

with the elevation-controlled low suction measurement, the air entry value can be 

estimated by observing the initiation of desaturation. Residual volumetric water content 

(r) of soil can be estimated from previous results in the literature. For example, r of 

sand is between 0.01 and 0.1 (Fredlund et al. 1997 & Imre 2008). Mine tailings could be 

higher since the particle size is smaller than sands, which will give the soil more water 

hold capacity. The range of residual volumetric water content of mine tailing is between 

0.1 and 0.2 (Swanson, 1999). Kaolinite is a fine-grained soils, whose residual water 

content usually ranges from 0.4-0.5 (Anandarajah, 2011). n is related to the type of soil 

and its grain size distribution (van Genutchen, 1980). For gap graded sand, n could be as 

high as 15 (Imre, 2008). Since clay has the highest water hold capacity, the major 

desaturation curve is really flat, which leads to the range of n values from 1.001 to 5. n 

value of mine tailings and silts are between sand and clay. Saturated hydraulic 

conductivity of sand can be measured through constant water head test. It is more 

difficult and time consuming to measure the saturated hydraulic conductivity (Ks) of clay 

due to its low hydraulic conductivity. A reasonable range of initial Ks values was 

assumed based on literature review. Table 6.1 summarized the initial parameters for 

different materials used in this study. 

 

Table 6.1 Estimated initial values and ranges for SWCC coefficients 

  a n r Ks (cm/h) 
  Min Max Min max Min Max Min Max 
Uniform 
Sand 0.5 1 3 20 0.01 0.1 1 60 
Fine Sand 0.001 0.01 1.001 5 0.01 0.1 0.01 10 
Mine 
Tailing 0.01 0.1 1.001 5 0.1 0.2 

3.60E-
03 3.60E-05 

Kaolinite 0.0001 0.001 1.001 5 0.4 0.5 
3.60E-

04 3.60E-06 
 

6.1.3.2 Initial and boundary conditions. Hydrus 1D model is composed of two 

materials, one is the soil specimen and the other is high air entry value ceramic disk 
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(Figure 6.1). The water flow through soil sample is from top to bottom. The initial 

condition and boundary conditions for Hydrus 1D simulation is plotted in Figure 6.1. 

 

Soil Sample

Ceramic Disk

2.5400

1.0000

Top Boundary Condition:

Constant Flux = 0

Bottom Boundary Condition:

Constant Pressure Head

1.0000

0.6460

kPa

kPa

Initial

Pressure

Distribution

 
Figure 6.1 Initial condition and Boundary condition of Simulation 

 

It should be noted that a non-uniform initial matric suction distribution is required 

for using inverse modeling for multistep simulation (van Dam, 1992). Toorman et al. 

(1992) designed a device to measure matric suction inside the soil sample during testing. 

In this study, these values were not measured. Instead, on top of the applied single matric 

suction value, hydrostatic matric suction distribution with respect to the middle height of 

the specimen was assumed (Figure 6.1). 

6.1.3.3 Fluxes verse time curve. The numerically simulated flux vs. time results 

should agree with the measured ones. Figure 6.2 shows the typical measured flux vs. time 

curve for each suction step. Each curve represents the outflow distance under different 

suction. At each applied matric suction value, the observed curve will be linear initially, 

and then the slope will decrease until reaching a plateau value. Outflow vs. time 

relationship is the objective for Hydrus 1D’s inverse problem-solving. 
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Figure 6.2 Fluxes – Time relationship 

 

It is shown in Figure 6.2 that water will come out of sample under each suction 

step. When air pressure gets to AEV, volume of water will increase quickly until soil 

sample reached residual condition. 

6.1.4. Hydrus Inverse Solution Method. One-step Outflow Method (OOM), 

Multiple Single Step Outflow Method (MSOM), and Multistep Outflow Methods (MOM) 

were exercised to determine SWCC. Each of them was elaborated below. 

6.1.4.1 Multiple single-step outflow method (MSOM). Multiple single-step 

outflow method (MSOM) is a method by simulating the observed outflow – time 

relationship for each matric suction with inversely solved SWCC functions. MSOM 

simulates exactly the same process as the actual SWCC measurement. Desaturation of the 

sample takes for about 100 hours for mine tailing under each matric suction step. Four 

matric suction values, 18 kPa, 45 kPa, 97 kPa and 197 kPa, which account for the 
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majority of the water content changes, were chosen for the simulation. Figure 6.3 exhibits 

the Outflow – Time relationship under these matric suctions.  

 

 
Figure 6.3 MSOM method 

 

Figure 6.2 shows the same information with Figure 6.3. The differences between 

these two are the vertical axis. Figure 6.2 demonstrates the reading change of water 

volume measurement as obtained from laboratory tests. Figure 6.3 changes the volume of 

water into outflow distance by dividing the surface area of sample as used in Hydrus 1D. 

Since water is flow out of sample, the outflow is negative.  

MSOM was simulated at four matric suction values were AEV (18 kPa), 

inflection point (45.3 kPa), 100 kPa and 200 kPa. Figures 6.4 and 6.5 show simulated 

SWCC and Q-T results at these four matric suction values. The simulated a, n, r and Ks 

are listed in Table 6.2. In addition, the differences between the measured and simulated 

SWCC or Q-T curves, in terms of coefficient of determination (R2), were also calculated 

(Table 6.2). 
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Figure 6.4 MSOM Simulation Results 

 
Figure 6.5 MSOM Flux – Time 
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Table 6.2 Summary of simulation results 

    a n r Ks 
R2

 for 

Q-T 

R2
 for 

SWCC 

MSOM 

AEV 0.0113 1.29 0.26 0.00313 0.99670 0.87267 
Inflection 0.00439 3 0.17 0.0231 0.99000 0.95034 
100 kPa 0.004 2.27 0.13 0.0282 0.99800 0.98290 
200 kPa 0.004 2.04 0.12 0.0143 0.96400 0.92528 

OOM 

AEV 0.0138 1.36 0.24 0.00463 0.99810 0.86380 
Inflection 0.08 1.73 0.11 0.0151 0.98980 0.96384 
100 kPa 0.00616 1.66 0.08 0.0141 0.98270 0.97578 
200 kPa 0.00729 1.51 0.1 0.0144 0.97560 0.96791 

MOM All 0.0095 1.44 0.11 0.0114 0.96350 0.99613 
Measured   0.0370 2.10 0.125       
 

Among these four simulated curves, the best one is inverse calculation from 100 

kPa (R2 = 0.998).  

It is observed that simulated SWCC based on Q-T curve at AEV matches with the 

measured SWCC only at suctions no higher than AEV. This is because no information on 

matric suctions or pore sizes was given by Q-T curves at AEV, and because the outflow 

at AEV only accounts for a small portion of the overall outflow. On the other hand, it is 

observed that simulated SWCC based on Q-T curve at the 100 kPa best represents the 

measured SWCC, especially before 250 kPa (near residual condition). This is because the 

outflow at 100 kPa accounts for the major portion of the overall outflow. This is also 

because expelled water (Q-T) at 100 kPa, corresponding to the matric suction range from 

45 kPa and 100 kPa, passes through the major range of the pore sizes of this soil. Similar 

trends can also be observed for simulated SWCCs from Q-T curves at inflection (45 kPa) 

and 200 kPa that, in general, the most accurate estimations of SWCC were obtained near 

the matric suction values at which the actual Q-T curves were used as the input. This 

observation was further validated by the simulated SWCCs from Q-T at 200 kPa, where 

accurate SWCC estimation was observed only from 110 to 1000 kPa.  

Inverse modeling of Hydrus 1D used van Genutchen (1980) hydraulic 

conductivity function (Eq. 6.3). It was noted that van Genutchen’s (1980) hydraulic 

conductivity function shares the same parameter, m, as van Genutchen’s SWCC model 

(Eq. 6.2). This exerts an additional restriction to hydraulic conductivity function, which 
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might lead to larger difference between the simulated and measured Q-T curves. 

Unfortunately, there is no alternative hydraulic conductivity functions in Hydrus 1D, 

which allows different m parameters from van Genutchen’s SWCC model. Hydrus 1D 

can simulate both SWCC and hydraulic conductivity, the result of Hydraulic conductivity 

is shown in Figure 6.6. 

 

 
Figure 6.6 MSOM simulation result of unsaturated hydraulic conductivity 

 

According to Figure 6.6, the hydraulic conductivity changed with degree of 

saturation which is related to matric suction.  

6.1.4.2 One-step outflow method (OOM). Gardner (1958) applied a series of 

matric suctions on the saturated soil sample, and the outflow was recorded at each matric 

suction step. From Gardner’s method, Doering (1965) proposed a one-step experiment to 

avoid the traditional time consuming SWCC test and achieve a precise result. Whisler 

and Watson (1968) further stated that the drainage over time measurement and one-step 

SWCC can be used to predict the unsaturated hydraulic conductivity curve by matching 

observed outflow and simulated results. Russo (1988) found that the soil hydraulic 
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conductivity function could be optimized through one-step method. Also, Simunek and 

Hopmans (2002) discussed the parameter optimization and uniqueness of inverse 

modeling. Their approach assumed the initial input parameters are the true description of 

SWCC. Through iterations on the parameters, final input parameters were obtained by 

matching the simulated flux with measurement outflow.  

The input data of one-step outflow method are soil geometry, fitting parameters, 

initial and boundary conditions, and Q-T data. Soil geometry, boundary conditions, and 

fitting parameters (initial and range) were the same as those in multiple single-step 

outflow method (MSOM). Initial matric suction values were hydrostatic as shown in 

Figure 6.1, with no additional initial uniform matric suction (start from saturation).  

The major difference between MSOM and OOM is the input Q-T data. As 

suggested by Wayllace and Lu (2012) the Q-T in OOM should be cover a large suction 

range, or a significant amount of water content change. In this study, however, the 

outflow was measured at small increment of matric suction. To simulate One-step 

Outflow case, the Q-T curves at subsequent matric suction values from 1 kPa to a larger 

value (AEV, 45 kPa, 100 kPa, and 200 kPa in this study) were superposed to yield a 

pseudo One-step Outflow versus time curve (Figure 6.8). This pseudo One-step Outflow 

vs. time curve will be used as input in Hydrus 1D inverse modeling. 
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Figure 6.7 OOM simulation 

 

 
Figure 6.8 Superposition of MSOM outflow (q) to OOM outflow (Q) 

 

Q3=q1+q2+q3 
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The typical SWCC prediction result of mine tailing is shown on Figure 6.7 and 

Fluxes – Time relationship (Q-T) is in Figure 6.8. The simulated parameters s, r, a, n 

are listed in Table 6.2.  

 

 
Figure 6.9 OOM simulation result 

 
Figure 6.10 OOM Fluxes - Time 
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It is observed that simulated SWCC based on cumulative Q-T curve at 200 kPa 

best represents the measured SWCC, especially before 100 kPa (Figure 6.8). Simulated 

SWCC based on cumulative Q-T curve at AEV (18 kPa) yielded good estimation only 

before 20 kPa (Figure 6.8). Similar to MSOM, it was observed that cumulative Q-T curve 

with larger amount of outflow volume, containing more information of the matric suction 

and inherent pore size distribution, yielded better prediction of SWCC. 

It is also observed a gradual increase in Ks value as final matric suction increased 

(Table 6.2), which is necessary to accommodate the superposed flow rate, especially at 

near saturation state. Figure 6.11 exhibits the simulation result of unsaturated hydraulic 

conductivity verses matric suction. 

 

 
Figure 6.11 Degree of saturation verses unsaturated hydraulic conductivity 

 

6.1.4.3 Multi-step outflow method (MOM). Multi-step outflow method (MOM) 

shared the same soil geometry, fitting parameters (initial and range), and initial 

conditions with one-step outflow method (OOM). However, the boundary condition and 

Q-T curve were different. A stepwise increment of matric suction, namely 18, 45, 100, 
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and 200 kPa, was applied at the bottom of the ceramic disk. The corresponding Q-T 

curve under each of the four matric suctions was used directly as the input.  

Figure 6.12 and Figure 6.13 exhibit the inversely calculated Q-T curve and 

SWCC results. Table 6.2 lists the simulated parameter. 

 

 
Figure 6.12 MOM prediction result of mine tailing 
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Figure 6.13 Simulated Outflow - Time curve for MOM 

 

From Figure 6.13, MOM simulated SWCC curve had higher R2 value (0.996) 

than OOM or MSOM did. This is reasonable because MOM has four points in SWCC, 

while OOM or MSOM only has two points in SWCC. However, the difference in R2 is 

not so significant, and both OOM and MSOM can yield reasonable SWCC predictions.  

Outflow vs. time curve from MOM, however, yields the least accurate Q-T results 

(Table 6.2). In first two matric suction steps (18 and 45 kPa) the outflow was 

overestimated, while in the last two matric suction steps (100 and 200 kPa) the outflow 

was underestimated. The high difference was the result of the compromise of Ks values 

for the four Q-T results under different matric suctions.  

Figure 6.14 describes the simulated unsaturated hydraulic conductivity 

relationship with degree of saturation. 
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Figure 6.14 MOM simulated unsaturated hydraulic conductivity  

 

6.2. SUMMARY 

All the simulation result is shown in Table 6.2. Simulated parameters will be 

compared with measured value. Figure 6.13, 6.14 and 6.15 exhibit the simulated 

parameter verses different data point (AEV, inflection, 100 kPa, 200 kPa) 
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Figure 6.15 Simulated parameter a verses matric suction 

 

 
Figure 6.16 Simulated parameter n verses matric suction 
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Figure 6.17 Simulated parameter r verses matric suction 

 

The observed Outflow – Time curve all fits well but SWCC does not. From the R 

Square value of SWCC, the best fitting curve is MOM simulation.  

Value a ranges from 0.004-0.0049 which implies the AEV is between 20-25 kPa. 

Only MSOM-200 kPa gets the AEV equals to 0.009 which is not close to the measured 

data. The reason is the data provided to Hydrus is only in residual condition which will 

lead to the bias under lower suction. Fredlund and Xing model gives out the AEV around 

18 kPa which is close to the simulation result.  

Simulation parameter n is variable from 1.5-2.08, the two smallest value come 

from simulation of AEV, because data point AEV does not provide enough data for 

major desorption curve which is close related to parameter n. Residual water content r 

does not have a good match with the measured data.  

Since SWCC is directly related to unsaturated soil permeability, so any 

misinterpretation of permeability will cause the difference between measured and fitted 

SWCC. Hydrus is using van Genutchen (1980) unsaturated soil permeability function 

which is not appropriate for MT, especially under higher suction. If there is a 

permeability function can represent the real value of MT, the residual water content will 
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be calculated accurately. Ks describes the saturated permeability of MT which is variable 

through 0.00014 cm/h to 6.3 cm/h. The best fit curve is calculated from MOM so the Ks 

value 0.00453 cm/h should be close to the real condition. 
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7. CONCLUSION AND FUTURE WORK 

7.1. SUMMARY OF WORK 

In this study, soil-water characteristic curve (SWCC) of sands modified with 

different biopolymers were measured with both Tempe cell and Fredlund SWCC device. 

An elevation-controlled low suction (0.01 to 5 kPa) horizontal tube was developed to 

accurately measure SWCC of sands. Corrections for air diffusion and evaporation were 

performed. With above modifications, consistent SWCC results can be obtained for 

biopolymer modified sands. Inverse simulation of SWCC based on One-step or multistep 

measurement were carried out with Hydrus 1D. The measured SWCC results of mine 

tailing were used as an example. 

 

7.2. CONCLUSION 

1) The developed low suction horizontal tube are suitable for measuring SWCC 

of sands and indicate a good estimation of air-entry value (AEV). The AEV of 

Ottawa 20-30 sand is 0.5 kPa which is impossible to measure with regular 

device. 

2) SWCC results were fitted by both Fredlund and Xing (1994) and van 

Genutchen (1980) equations. It was found that air entry value and residual 

matric suction increased with xanthan gum, polyacrylamide (PAM), and 

sodium alginate (SA). SA has the most huge impact on increase AEV and 

residual water content. The AEV was increased from 0.5 kPa to 25 kPa and 

the residual water content was increased from 3% to 20%. 

3) By using Scanning Electron Microscope (SEM), Laplace equation and the 

measurement of contact angle, surface tension, viscosity. It is indicate that the 

addition of biopolymer will decrease the pore size and increase the water 

holding capacity.  
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4) SWCC prediction was performed by using Hydrus 1D. The three methods 

MSOM, OOM and MOM all provide good prediction with R2 larger than 95% 

except for the AEV. Because AEV does not provide enough information. It 

was found that MOM provided the most accurate SWCC, while MSOM 

yielded the most accurate Q-T results. 

 

7.3. FUTURE WORK 

1) More SWCC tests on biopolymer modified fine-grained soils are suggested to 

expand current pool of SWCC database.  

2) Although SA increased AEV and residual water content of sand however, 

mine tailing is not tested with biopolymers. Experimentally identify good 

biopolymer candidate to increase the water retention capacity of mine tailing. 

3) Only drying curve was measured but hysteresis of SWCC, including both 

drying and wetting processes, is suggested to provide a complete SWCC 

behavior.  

4) SWCC and relative hydraulic conductivity models with separate sets of 

parameters are suggested for better Hydrus 1D inverse simulation. 
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APPENDIX 

 
Figure A.1 SWCC and test result of Ottawa sand 20-30with water 

 

 
                         Figure A.2 Flux – Time for Ottawa sand 20-30 with water 
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                            Figure A.3 SWCC for Ottawa Sand 50-70 with water 

 

 
               Figure A.4 Flux – Time relationship for Ottawa Sand 50-70 with water 
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            Figure A.5 SWCC result and curve fitting for Ottawa Sand 125 with water 

 
                     Figure A.6 Flux – Time curve for Ottawa Sand 125 with water 
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                               Figure A.7 SWCC result of sand with 10 g/L PEO 

 
                              Figure A.8 Flux – Time relationship for 10 g/L PEO 
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                                  Figure A.9 SWCC result of sand with xanthan 

 
                         Figure A.10 mass of water expelling for sand with xanthan 

 



www.manaraa.com

 

 

81 

 
                                Figure A.11 SWCC result of 20g/L SA with sand 

 
                           Figure A.12 the mass of outflow under different suction 



www.manaraa.com

 

 

82 

 
                                Figure A.13 SWCC result for sand with 2g/L SA 

 
                           Figure A.14 Flux – Time relation for sand with 2g/L SA 
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                                    Figure A.15 SWCC result of sand with PAA 

 
                            Figure A.16 mass of outflow verse time curve for PAA 
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                                    Figure A.17 SWCC result of sand with PAM 

 
                                  Figure A.18 Flux – Time relationship for PAM 
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                                    Figure A.19 SWCC result of sand with Agar 

 
                                            Figure A.20 Flux – Time for Agar 
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                                 Figure A.21 SWCC result of sand with Chitosan 

 
                                         Figure A.22 Flux – Time for Chitosan 
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                             Figure A.23 SWCC result of sand mixture with water 

 
                             Figure A.24 Flux – Time for sand mixture with water 
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                             Figure A.25 SWCC result of sand mixture with PAA 

 
                              Figure A.26 Flux – Time of sand mixture with PAA 
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                             Figure A.27 SWCC result of sand mixture with PAM 

 
                              Figure A.28 Flux – Time of sand mixture with PAM 

 



www.manaraa.com

 

 

90 

 
                           Figure A.29 SWCC result of sand mixture with Xanthan 

 
                           Figure A.30 Flux – Time of sand mixture with Xanthan 
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                                Figure A.31 SWCC result of kaolinite with water 

 
                                 Figure A.32 Flux – Time of kaolinite with water 
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                              Figure A.33 SWCC result of mine tailing with water 

 
                              Figure A.34 Flux – Time of mine tailing with water 
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